What is involved in a DNA test?
matching up genetic markers
What is involved in a DNA test?
matching up genetic markers
Erwin Chargaff, a biochemist at
Even as biochemists described DNA's chemistry, molecular physicists attempted to determine DNA's shape. Using a process called X-ray crystallography, chemist Rosalind Franklin and physicist Maurice Wilkins, working together at King's College London in the early 1950s, debated whether DNA had a helical shape. Initial measurements indicated a single helix, but later experiments left
In 1952, an iconoclastic research team composed of an American geneticist, James Watson, and a British physicist, Francis Crick, resolved the debate and unlocked DNA's secret. The men used scale-model atoms to construct a model of the DNA molecule. Watson and Crick initially posited a helical structure, but with the bases radiating outward from a dense central helix. After meeting with Chargaff, Watson and Crick learned that the GC and AT ratios could indicate chemical bonds; hydrogen atoms could bond the guanine and cytosine, but could not bond either base to adenine or thymine. The inverse also proved true, since hydrogen could bond adenine to thymine. Watson and Crick assumed these weak chemical links and made models of the nucleotide base pairs GC and AT. They then stacked the base-pair models one atop the other, and saw that the phosphate and sugar components of each nucleotide bonded to form two chains with one chain spinning "up" the molecule, the other spinning "down" the opposite side. The resulting DNA model resembled a spiral staircase—the famous double helix.
Watson and Crick described their findings in an epochal 1953 paper published in the journal Nature. Watson and Crick had actually solved two knotty problems simultaneously: the structure of DNA and how DNA replicated itself in cell division—an idea they elaborated in a second path breaking paper in Nature. If one split the long DNA molecule at the hydrogen bonds between the bases, then each half provided a framework for assembling its counterpart, creating two complete molecules—the doubling of chromosomes during cell division. Although it would take another thirty years for crystallographic confirmation of the double helix, Crick, Watson, and Rosalind Franklin's collaborator Maurice Wilkins shared the 1962 Nobel Prize in physiology or medicine (Franklin had died in 1958). The study of molecular genetics exploded in the wake of Watson and Crick's discovery.
Once scientists understood the structure of DNA molecules, they focused on decoding the DNA in chromosomes—determining which base combinations created structural genes (those genes responsible for manufacturing amino acids, the building blocks of life) and which combinations created regulator genes (those that trigger the operation of structural genes). Between 1961 and 1966, Marshall Nirenberg and Heinrich Matthaei, working at the National Institutes of Health, cracked the genetic code. By 1967, scientists had a complete listing of the sixty-four three-base variations that controlled the production of life's essential twenty amino acids. Researchers, however, still lacked a genetic map precisely locating specific genes on individual chromosomes. Using enzymes to break apart or splice together nucleic acids, American scientists, like David Baltimore, helped develop recombinant DNA or genetic engineering technology in the 1970s and 1980s.
Genetic engineering paved the way for genetic map-ping and increased genetic control, raising a host of political and ethical concerns. The contours of this debate have shifted with the expansion of genetic knowledge. In the 1970s, activists protested genetic engineering and scientists decried for-profit science; thirty years later, protesters organized to fight the marketing of genetically modified foods as scientists bickered over the ethics of cloning humans. Further knowledge about DNA offers both promises and problems that will only be resolved by the cooperative effort of people in many fields—medicine, law, ethics, social policy, and the humanities—not just molecular biology.
Dna (deoxyribonucleic acid) is a nucleic acid that carries genetic information. The study of DNA launched the science of Molecular Biology, transformed the study of genetics, and led to the cracking of the biochemical code of life. Understanding DNA has facilitated Genetic Engineering, the genetic manipulation of various organisms; has enabled cloning, the asexual reproduction of identical copies of genes and organisms; has allowed for genetic fingerprinting, the identification of an individual by the distinctive patterns of his or her DNA; and made possible the use of Genetics to predict, diagnose, prevent, and treat disease.
Discovering Dna
In the late nineteenth century, biologists noticed structural differences between the two main cellular regions, the nucleus and the cytoplasm. The nucleus attracted attention because short, stringy objects appeared, doubled, then disappeared during the process of cell division. Scientists began to suspect that these objects, dubbed chromosomes, might govern heredity. To understand the operation of the nucleus and the chromosomes, scientists needed to determine their chemical composition.
Swiss physiologist Friedrich Miescher first isolated "nuclein"—DNA—from the nuclei of human pus cells in 1869. Although he recognized nuclein as distinct from other well-known organic compounds like fats, proteins, and carbohydrates, Miescher remained unsure about its hereditary potential. Nuclein was renamed nucleic acid in 1889, and for the next forty years, biologists debated the purpose of the compound.
In 1929, Phoebus Aaron Levene, working with yeast at
Levene's conclusions remained axiomatic until 1944, when Oswald Avery, a scientist at the Rockefeller Institute, laid the groundwork for the field of molecular genetics. Avery continued the 1920s-era research of British biologist Fred Griffiths, who worked with pneumococci, the bacteria responsible for pneumonia.
Discovering DNA
Today it is common knowledge that DNA, a nucleic acid, directs the development of cells. Scientists gradually learned about DNA in a curiously twisted fashion that is common in science. For one thing, the discovery of DNA required progress on three separate fronts: cytology (the study of cells through a microscope), genetics, and chemistry.
Curved Dna
DNA containing tracts of (A)3-4•(T)3-4 (that is, runs of three or four bases of A in one strand and a similar run of T in the other) spaced at 10-base pair intervals can adopt a curved helix structure.
Left-Handed Z-Dna
Quadruplex Dna
Intramolecular Triplex Dna
Intermolecular Triplex Dna
Three-stranded, or triplex DNA, can form within tracts of polypurine.polypyrimidine sequence, such as (GAA)n·(TTC)n. Purines, with their two-ring structures, have the potential to form hydrogen bonds with a second base, even while base paired in the canonical A·T and G·C configurations. This second type of base pair is called a Hoogsteen base pair, and it can form in the major groove (the top of the base pair representations in Figure 2). Pyrimidines can only pair with a single other base, and thus a long Pu·Py tract must be present for triplex DNA formation. The important factor for triplex DNA formation is the presence of an extended purine tract in a single DNA strand. The third-strand base-pairing code is as follows: A can pair with A or T; G can pair with a protonated C (C+) or G.
Slipped-Strand Dna
DNA sequences are said to be palindromic when they contain inverted repeat symmetry, as in the sequence GGAATTAATTCC, reading from the 5′ to the 3′ end. Palindromic sequences can form intramolecular bonds (within a single strand), rather than the normal intermolecular (between the two complementary strands), hydrogen bonds. To form cruciforms ("cross-shaped"), the DNA must form a small unwound structure, and then base pairs must begin to form within each individual strand, thus forming the four-stranded cruciform structure.
Since A•T base pairs contain two hydrogen bonds and C•G base pairs contain three, A+T-rich tracts are less thermally stable that C+G-rich tracts in DNA. Under denaturing conditions (heat or alkali), the DNA begins to "melt" (separate), and unwound regions of DNA will form, and it is the A+T-rich sequences that melt first. In addition, in the presence of superhelical energy (a high-energy state of DNA resulting from its supercoiling, which is the natural form of DNA in the chromosomes of most organisms), A+T-rich regions can unwind and remain unwound under conditions normally found in the cell. Such sites often provide places for DNA replication proteins to enter DNA to begin the process of chromosome duplication.
Alternative Dna Conformations
While the vast majority of the DNA exists in the canonical B-DNA form, DNA can adopt an amazing array of alternative structures. This is the result of certain particular sequence arrangements of DNA and, in many cases, energy in the DNA double helix from DNA supercoiling, the property of DNA in which the double helix, in a high-energy state, becomes twisted around itself. Some alternative DNA conformations identified are shown in Figure 4.
The stabilization of duplex (double-stranded) DNA is also dependent on base stacking. The planar, rigid bases stack on top of one another, much like a stack of coins. Since the two purine.pyrimidine pairs (A.T and C.G) have the same width, the bases stack in a rather uniform fashion. Stacking near the center of the helix affords protection from chemical and environmental attack. Both hydrophobic interactions and van der Waal's forces hold bases together in stacking interactions. About half the stability of the DNA helix comes from hydrogen bonding, while base stacking provides much of the rest.
Double-stranded DNA in its canonical B-form is a right-handed helix formed by two individual DNA strands aligned in an antiparallel fashion (a right-handed helix, when viewed on end, twists clockwise going away from the viewer). Antiparallel DNA has the two strands organized in the opposite polarity, with one strand oriented in the 5′-3′ direction and the other oriented in the 3′-5′ direction.
In the right-handed B-DNA double helix, the stacked base pairs are separated by about 3.24 angstroms with 10.5 base pairs forming one helical turn (360°), which is 35.7 angstroms in length. Two successive base pairs, therefore, are rotated about 34.3° with respect to each other. The width of the helix is 20 angstroms. An idealized model of the double helix is shown in Figure 3. As can be seen, the organization of the bases creates a major groove and a minor groove.
Adenine and thymine are said to be complementary, as are cytosine and guanine. Complementary means "matching opposite." The shapes and charges of adeninne and thymine complement each other, so that they attract one another and link up (as do cytosine and guanine). Indeed, one entire strand of duplex DNA is complementary to the opposing strand. During replication, the two strands unwind, and each serves as a template for formation of new complementary strand, so that replication ends with two exact double-stranded copies.
Nucleosides and Nucleotides
The term "nucleoside" refers to a base and sugar. "Nucleotide," on the other hand, refers to the base, sugar, and phosphate group (Figure 1). A bond, called the glycosidic bond, holds the base to the sugar and the 3′-5′ ("three prime-five prime") phosphodiester bond holds the individual nucleotides together. Nucleotides are joined from the 3′ carbon of the sugar in one nucleotide to the 5′ carbon of the sugar of the adjacent nucleotide. The 3′ and the 5′ ends are chemically very distinct and have different reactive properties. During DNA replication, new nucleotides are added only to the 3′ OH end of a DNA strand. This fact has important implications for replication.
Deoxyribose Sugar
Bases and Base Pairs
The four bases found in DNA are shown in Figures 1 and 2. The purines and pyrimidines are the informational molecules of the genetic blueprint for the cell. The two sides of the helix are held together by hydrogen bonds between base pairs. Hydrogen bonds are weak attractions between a hydrogen atom on one side and an oxygen or nitrogen atom on the other. Hydrogen atoms of amino groups serve as the hydrogen bond donor while the carbonyl oxygens and ring nitrogens serve as hydrogen bond acceptors. The specific location of hydrogen bond donor and acceptor groups gives the bases their specificity for hydrogen bonding in unique pairs. Thymine (T) pairs with adenine (A) through two hydrogen bonds, and cytosine (C) pairs with guanine (G) through three hydrogen bonds (Figure 2). T does not normally pair with G, nor does C normally pair with A.
The Components of Dna
DNA is composed of purine (adenine and guanine) and pyrimidine (cytosine and thymine) bases, each connected through a ribose sugar to a phosphate backbone. Many variations are possible in the chemical structure of the bases and the sugar, and in the structural relationship of the base to the sugar that result in differences in helical shape and form. The most common DNA helix, B-DNA, is a double helix of two DNA strands with about 10.5 base pairs per helical turn.
DNA (deoxyribonucleic acid) was discovered in the late 1800s, but its role as the material of heredity was not elucidated for fifty years after that. It occupies a central and critical role in the cell as the genetic information in which all the information required to duplicate and maintain the organism. All information necessary to maintain and propagate life is contained within a linear array of four simple bases: adenine, guanine, thymine, and cytosine.
DNA was first described as a monotonously uniform helix, generally called B-DNA. However, we now know that DNA can adopt many different shapes and conformations. Moreover, many of these alternative shapes have biological importance. Thus, the DNA is not simply an informational repository, from which information flows through RNA into proteins. Rather, structural information exists within the specific sequence patterns of the bases. This structural information dictates the interaction of DNA with proteins to carry out processes of DNA replication, transcription into RNA, and repair of errors or damage to the DNA.
The abbreviation stands for deoxyribonucleic acid, a double-stranded nucleic acid, in which the two strands twist together to form a helix. The strands consist of sugar and phosphate groups, the sugars being attached to a base — adenine, thymine, guanine, or cytosine. In DNA the bases pair to form a ladder-like structure, with adenine paired with thymine and guanine with cytosine. DNA forms the basis of inheritance in all organisms, except viruses, the DNA code being sufficient to build and control the organism. DNA is located in the nucleus of all cells; it is the substance of the chromosomes that separate out from the nucleus when cells divide, and it carries the genes, each of which is a segment of a DNA molecule. A small fraction of total DNA is present in mitochondria that codes for a few mitochondrial proteins. This DNA is passed down the female line from the mitochondria contained in the ovum.
— Alan W. Cuthbert
Bibliography
See cell; genetics, human.
Deoxyribonucleic acid, the genetic material in the nuclei of all cells. Chemically it is a polymer of deoxyribonucleotides; the purine bases adenine and guanine, and the pyrimidine bases thymidine and cytidine, linked to deoxyribose phosphate. The sugar-phosphates form a double-stranded helix, with the bases paired internally
One of two types of nucleic acid (the other is RNA); a complex organic compound found in all living cells and many viruses. It is the chemical substance of genes. Its structure, with two strands wound around each other in a double helix to resemble a twisted ladder, was first described (1953) by Francis Crick and James D. Watson. Each strand is a long chain (polymer) of repeating nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). The two strands contain complementary information: A forms hydrogen bonds (see hydrogen bonding) only with T, C only with G. When DNA is copied in the cell, the strands separate and each serves as a template for assembling a new complementary strand; this is the key to stable heredity. DNA in cells is organized into dense protein-DNA complexes (see nucleoprotein) called chromosomes. In eukaryotes these are in the nucleus, and DNA also occurs in mitochondria and chloroplasts (if any). Prokaryotes have a single circular chromosome in the cytoplasm. Some prokaryotes and a few eukaryotes have DNA outside the chromosomes in plasmids. See also Rosalind Franklin; genetic engineering; mutation; Maurice Wilkins.
DNA double helix. A. Molecular model of DNA. The molecules include (1) hydrogen, (2) oxygen (3)
Variant: deoxyribonucleic acid
The genetic material of most living organisms, which is a major constituent of the chromosomes within the cell nucleus and plays a central role in the determination of hereditary characteristics by controlling protein synthesis in cells. DNA is a nucleic acid composed of two chains of nucleotides in which the sugar is deoxyribose and the bases are adenine,cytosine, guanine, and thymine (compare RNA). The two chains are wound round each other and linked together by hydrogen bonds between specific complementary bases to form a spiral ladder-shaped molecule (double helix: see illustration).
When the cell divides, its DNA also replicates in such a way that each of the two daughter molecules is identical to the parent molecule. The hydrogen bonds between the complementary bases on the two strands of the parent molecule break and the strands unwind. Using as building bricks nucleotides present in the nucleus, each strand directs the synthesis of a new one complementary to itself. Replication is initiated, controlled, and stopped by means of polymerase enzymes.
A nucleic acid that carries the genetic information in the cell and is capable of self-replication and synthesis of RNA. DNA consists of two long chains of nucleotides twisted into a double helix and joined by hydrogen bonds between the complementary bases adenine and thymine or cytosine and guanine. The sequence of nucleotides determines individual hereditary characteristics.
[D(EOXYRIBO)N(UCLEIC) A(CID).]
A. adenine
T. thymine
C. cytosine
G. guanine
D. deoxyribose
P. phosphate
(Academy Artworks)